Degree of endplate chondrocyte degeneration in different tension regions during mechanical stimulation

نویسندگان

  • Yongming Xu
  • Shujuan Xu
  • Zhi Gao
  • Liang Xiao
  • Fei Xiao
  • Hongguang Xu
  • Xiaoling Zhang
چکیده

The aim of this study was to explore the degree of degeneration of endplate chondrocytes in different tension regions induced by intermittent cyclic mechanical tension (ICMT) in vitro. Rat endplate chondrocytes were harvested and treated with 10% ICMT for 8 h/day with a frequency of 0.5 Hz. A cartilage degeneration model was induced using an FX‑5000T cell strain‑loading system. The experiment was divided into the central region and the peripheral region, according to the contact area between the loading post and the six‑well flexible silicone rubber BioFlex plates. Toluidine blue and phalloidin staining were used to observe the morphological changes of cells following mechanical stimulation. Apoptosis was detected by flow cytometry and the mRNA and protein expression levels of collagen type II α1, aggrecan, SRY‑box 9 and matrix metalloproteinase 13 were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting, respectively. Endplate chondrocytes exhibited degenerative alterations under mechanical conditions of 10% ICMT and 0.5 Hz at 8 h/day. Toluidine blue and phalloidin staining demonstrated that the cells in the peripheral region were more slender compared with cells in the central region, but RT‑qPCR and western blotting results demonstrated that the degree of cell degeneration between the two groups was not statistically differences. So that cell morphological alteration does not imply that cells have undergone degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P120-Catenin Protects Endplate Chondrocytes From Intermittent Cyclic Mechanical Tension Induced Degeneration by Inhibiting the Expression of RhoA/ROCK-1 Signaling Pathway.

STUDY DESIGN The changes of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT) were observed by realtime reverse transcription-polymerase chain reaction, immunofluorescence, and Western blot analysis. OBJECTIVE To investigate the role of RhoA/ROCK-1 signaling pathway and E-cadherin/P120-catenin complex in endplate chondrocytes degeneration induced by ICMT. SUMMAR...

متن کامل

Intermittent cyclic mechanical tension altered the microRNA expression profile of human cartilage endplate chondrocytes

Previous studies have identified the association between cartilage endplate (CEP) degeneration and abnormal mechanical loading. Several studies have reported that intermittent cyclic mechanical tension (ICMT) regulates CEP degeneration via various biological processes and signaling pathways. However, the functions of microRNAs in regulating the cellular responses of CEP chondrocytes to ICMT rem...

متن کامل

Investigating Conversion of Endplate Chondrocytes Induced by Intermittent Cyclic Mechanical Unconfined Compression in Three-Dimensional Cultures

Mechanical stimulation is known to regulate the calcification of endplate chondrocytes. The ANK protein has a strong influence on anti-calcification by transports intracellular inorganic pyrophosphate (PPi) to the extracellular. It is known that TGF-β1 is able to induced Ank gene expression and protect chondrocyte calcification. Intermittent cyclic mechanical tension (ICMT) could induce calcifi...

متن کامل

Continuous Cyclic Mechanical Tension Increases Ank Expression in Endplate Chondrocytes Through the TGF-β1 and p38 Pathway

The normal ANK protein has a strong influence on anti-calcification. It is known that TGF-β1 is also able to induce extracellular inorganic pyrophosphate (ePPi) elaboration via the TGF-β1-induced ank gene expression and the mitogen-activated protein kinase (MAPK) signaling acts as a downstream effector of TGF-β1. We hypothesized that the expression of the ank gene is regulated by mechanics thro...

متن کامل

Static Mechanical Stress Induces Apoptosis in Rat Endplate Chondrocytes through MAPK and Mitochondria-Dependent Caspase Activation Signaling Pathways

Mechanical stress has detrimental effects on cartilaginous endplate chondrocytes due to apoptosis in vivo and in vitro. In this study, we investigated the possible apoptosis signaling pathways induced by mechanical stress in cultured rat cervical endplate chondrocytes. Static mechanical load significantly reduced cell viability in a time- and load-dependent manner, as demonstrated by the Cell C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018